A Study of the Combination of Variation Operators in the NSGA-II Algorithm

نویسندگان

  • Antonio J. Nebro
  • Juan José Durillo
  • Mirialys Machin Navas
  • Carlos A. Coello Coello
  • Bernabé Dorronsoro
چکیده

Multi-objective evolutionary algorithms rely on the use of variation operators as their basic mechanism to carry out the evolutionary process. These operators are usually fixed and applied in the same way during algorithm execution, e.g., the mutation probability in genetic algorithms. This paper analyses whether a more dynamic approach combining different operators with variable application rate along the search process allows to improve the static classical behavior. This way, we explore the combined use of three different operators (simulated binary crossover, differential evolution’s operator, and polynomial mutation) in the NSGA-II algorithm. We have considered two strategies for selecting the operators: random and adaptive. The resulting variants have been tested on a set of 19 complex problems, and our results indicate that both schemes significantly improve the performance of the original NSGA-II algorithm, achieving the random and adaptive variants the best overall results in the biand three-objective considered problems, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Agricultural BMPs Using a Parallel Computing Based Multi-Objective Optimization Algorithm

Beneficial Management Practices (BMPs) are important measures for reducing agricultural non-point source (NPS) pollution. However, selection of BMPs for placement in a watershed requires optimizing available resources to maximize possible water quality benefits. Due to its iterative nature, the optimization typically takes a long time to achieve the BMP trade-off results which is not desirable ...

متن کامل

An Adapted Non-dominated Sorting Algorithm (ANSA) for Solving Multi Objective Trip Distribution Problem

Trip distribution deals with estimation of trips distributed among origins and destinations and is one of the important stages in transportation planning. Since in the real world, trip distribution models often have more than one objective, multi-objective models are developed to cope with a set of conflict goals in this area. In a proposed method of adapted non-dominated sorting algorithm (ANS...

متن کامل

A Scheduling Model for the Re-entrant Manufacturing System and Its Optimization by NSGA-II

In this study, a two-objective mixed-integer linear programming model (MILP) for multi-product re-entrant flow shop scheduling problem has been designed. As a result, two objectives are considered. One of them is maximization of the production rate and the other is the minimization of processing time. The system has m stations and can process several products in a moment. The re-entrant flow sho...

متن کامل

Selecting Efficient Service-providers in Electric Power Distribution Industry Using Combinatorial Reverse Auction

In this paper, a combinatorial reverse auction mechanism is proposed for selecting the most efficient service-providers for resolving sustained power interruptions in multiple regions of an electric power distribution company’s responsibility area. Through this mechanism, supplying the required service in each region is assigned to only one potential service-provider considering two criteria in...

متن کامل

A Novel LSSVM Based Algorithm to Increase Accuracy of Bacterial Growth Modeling

Background: The recent progress and achievements in the advanced, accurate, and rigorously evaluated algorithms has revolutionized different aspects of the predictive microbiology including bacterial growth.Objectives: In this study, attempts were made to develop a more accurate hybrid algorithm for predicting the bacterial growth curve which can also be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013